SHARP L^p BOUNDS FOR THE HARDY–LITTLEWOOD MAXIMAL OPERATOR ON GROMOV HYPERBOLIC SPACES

Let (X, d) be a complete, geodesic, Gromov δ -hyperbolic space, and let μ be a positive locally doubling measure on X. We prove that if $1 < a \leq b < a^2$, and the measure of metric balls of radius $r \geq 1$ satisfies

 $ca^r \le \mu(B_r(x)) \le Cb^r$ for all $x \in X$,

then the centred Hardy–Littlewood maximal operator is bounded on $L^p(X, \mu)$ for all $p > \tau$ and is of weak type (τ, τ) , where $\tau = \log_a b$. Moreover, the index τ is optimal.

Our results apply to Cartan–Hadamard manifolds of pinched negative curvature, providing new boundedness results in these settings.

Based on joint work with Nikolaos Chalmoukis and Stefano Meda.